Latest Post

BIOTEKNOLOGI

| Kamis, 28 April 2011
Baca selengkapnya »

Bioteknologi adalah cabang ilmu yang mempelajari pemanfaatan makhluk hidup (bakteri, fungi, virus, dan lain-lain) maupun produk dari makhluk hidup (enzim, alkohol) dalam proses produksi untuk menghasilkan barang dan jasa.[1] Dewasa ini, perkembangan bioteknologi tidak hanya didasari pada biologi semata, tetapi juga pada ilmu-ilmu terapan dan murni lain, seperti biokimia, komputer, biologi molekular, mikrobiologi, genetika, kimia, matematika, dan lain sebagainya.[1] Dengan kata lain, bioteknologi adalah ilmu terapan yang menggabungkan berbagai cabang ilmu dalam proses produksi barang dan jasa.
Bioteknologi secara sederhana sudah dikenal oleh manusia sejak ribuan tahun yang lalu. Sebagai contoh, di bidang teknologi pangan adalah pembuatan bir, roti, maupun keju yang sudah dikenal sejak abad ke-19, pemuliaan tanaman untuk menghasilkan varietas-varietas baru di bidang pertanian, serta pemuliaan dan reproduksi hewan.[2] Di bidang medis, penerapan bioteknologi di masa lalu dibuktikan antara lain dengan penemuan vaksin, antibiotik, dan insulin walaupun masih dalam jumlah yang terbatas akibat proses fermentasi yang tidak sempurna. Perubahan signifikan terjadi setelah penemuan bioreaktor oleh Louis Pasteur.[1] Dengan alat ini, produksi antibiotik maupun vaksin dapat dilakukan secara massal.
Pada masa ini, bioteknologi berkembang sangat pesat, terutama di negara negara maju. Kemajuan ini ditandai dengan ditemukannya berbagai macam teknologi semisal rekayasa genetika, kultur jaringan, DNA rekombinan, pengembangbiakan sel induk, kloning, dan lain-lain.[3] Teknologi ini memungkinkan kita untuk memperoleh penyembuhan penyakit-penyakit genetik maupun kronis yang belum dapat disembuhkan, seperti kanker ataupun AIDS.[4] Penelitian di bidang pengembangan sel induk juga memungkinkan para penderita stroke ataupun penyakit lain yang mengakibatkan kehilangan atau kerusakan pada jaringan tubuh dapat sembuh seperti sediakala.[4] Di bidang pangan, dengan menggunakan teknologi rekayasa genetika, kultur jaringan dan DNA rekombinan, dapat dihasilkan tanaman dengan sifat dan produk unggul karena mengandung zat gizi yang lebih jika dibandingkan tanaman biasa, serta juga lebih tahan terhadap hama maupun tekanan lingkungan.[5] Penerapan bioteknologi di masa ini juga dapat dijumpai pada pelestarian lingkungan hidup dari polusi. Sebagai contoh, pada penguraian minyak bumi yang tertumpah ke laut oleh bakteri, dan penguraian zat-zat yang bersifat toksik (racun) di sungai atau laut dengan menggunakan bakteri jenis baru.[2]
Kemajuan di bidang bioteknologi tak lepas dari berbagai kontroversi yang melingkupi perkembangan teknologinya. Sebagai contoh, teknologi kloning dan rekayasa genetika terhadap tanaman pangan mendapat kecaman dari bermacam-macam golongan.
Bioteknologi secara umum berarti meningkatkan kualitas suatu organisme melalui aplikasi teknologi. Aplikasi teknologi tersebut dapat memodifikasi fungsi biologis suatu organisme dengan menambahkan gen dari organisme lain atau merekayasa gen pada organisme tersebut.[2]
Perubahan sifat Biologis melalui rekayasa genetika tersebut menyebabkan "lahirnya organisme baru" produk bioteknologi dengan sifat - sifat yang menguntungkan bagi manusia. Produk bioteknologi, antara lain[2]:
  • Jagung resisten hama serangga
  • Kapas resisten hama serangga
  • Pepaya resisten virus
  • Enzim pemacu produksi susu pada sapi
  • Padi mengandung vitamin A
  • Pisang mengandung vaksin hepatitis

Garis waktu bioteknologi

Jenis

Bioteknologi memiliki beberapa jenis atau cabang ilmu yang beberapa diantaranya diasosikan dengan warna, yaitu:[10]
http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Rochefort-beers.jpg/200px-Rochefort-beers.jpg
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Bir, salah satu produk bioteknologi putih konvensional.
  • Bioteknologi merah (red biotechnology) adalah cabang ilmu bioteknologi yang mempelajari aplikasi bioeknologi di bidang medis.[10] Cakupannya meliputi seluruh spektrum pengobatan manusia, mulai dari tahap preventif, diagnosis, dan pengobatan. Contoh penerapannya adalah pemanfaatan organisme untuk menghasilkan obat dan vaksin, penggunaan sel induk untuk pengobatan regeneratif, serta terapi gen untuk mengobati penyakit genetik dengan cara menyisipkan atau menggantikan gen abnomal dengan gen yang normal.[10]
  • Bioteknologi putih/abu-abu (white/gray biotechnology) adalah bioteknologi yang diaplikasikan dalam industri seperti pengembangan dan produksi senyawa baru serta pembuatan sumber energi terbarukan.[10] Dengan memanipulasi mikroorganisme seperti bakteri dan khamir/ragi, enzim-enzim juga organisme-organisme yang lebih baik telah tercipta untuk memudahkan proses produksi dan pengolahan limbah industri. Pelindian (bleaching) minyak dan mineral dari tanah untuk meningkakan efisiensi pertambangan, dan pembuatan bir dengan khamir.[10]
  • Bioteknologi hijau (green biotechnology) mempelajari aplikasi bioteknologi di bidang pertanian dan peternakan.[10] Di bidang pertanian, bioteknoogi telah berperan dalam menghasilkan tanaman tahan hama, bahan pangan dengan kandungan gizi lebih tinggi dan tanaman yang menghasilkan obat atau senyawa yang bermanfaat. Sementara itu, di bidang peternakan, binatang-binatang telah digunakan sebagai "bioreaktor" untuk menghasilkan produk penting contohnya kambing, sapi, domba, dan ayam telah digunakan sebagai penghasil antibodi-protein protektif yang membantu sel tubuh mengenali dan melawan senyawa asing (antigen).[10]
  • Bioteknologi biru (blue biotechnology) disebut juga bioteknologi akuatik/perairan yang mengendalikan proses-proses yang terjadi di lingkungan akuatik.[10] Salah satu contoh yang paling tua adalah akuakultura, menumbuhkan ikan bersirip atau kerang-kerangan dalam kondisi terkontrol sebagai sumber makanan, (diperkirakan 30% ikan yang dikonsumsi di seluruh dunia dihasilkan oleh akuakultura). Perkembangan bioteknologi akuatik termasuk rekayasa genetika untuk menghasilkan tiram tahan penyakit dan vaksin untuk melawan virus yang menyerang salmon dan ikan yang lain. Contoh lainnya adalah salmon transgenik yang memiliki hormon pertumbuhan secara berlebihan sehingga menghasilkan tingkat pertumbuhan sangat tinggi dalam waktu singkat.

Rekayasa genetika

Rekayasa genetika adalah prosedur dasar dalam menghasilkan suatu produk bioteknologi. Secara umum, rekayasa genetika melakukan modifikasi pada mahluk hidup melalui transfer gen dari suatu organisme ke organisme lain. Prosedur rekayasa genetika secara umum meliputi[2]:
  1. Isolasi gen.
  2. Memodifikasi gen sehingga fungsi biologisnya lebih baik.
  3. Mentrasfer gen tersebut ke organisme baru.
  4. Membentuk produk organisme transgenik.
Prosedur pembentukan organisme transgenic ada dua, yaitu:
  1. Melalui proses introduksi gen
  2. Melalui proses mutagenesis
Beberapa langkah dasar proses introduksi gen adalah[2]:
  1. Membentuk sekuen gen yang diinginkan yang ditandai dengan penanda yang spesifik
  2. Mentransformasi sekuen gen yang sudah ditandai ke jaringan
  3. Mengkultur jaringan yang sudah mengandung gen yang ditransformasikan
  4. Uji coba kultur tersebut di lapangan

Mutagenesis

Memodifikasi gen pada organisme tersebut dengan mengganti sekuen basa nitrogen pada DNA yang ada untuk diganti dengan basa nitrogen lain sehingga terjadi perubahan sifat pada organisme tersebut, contoh: semula sifatnya tidak tahan hama menjadi tahan hama. Agen mutagenesis ini biasanya dikenal dengan istilah mutagen. Beberapa contoh mutagen yang umum dipakai adalah sinar gamma (mutagen fisika) dan etil metana sulfonat (mutagen kimia).[5]

Human Genome Project

Human Genome Project adalah usaha international yang dimulai pada tahun 1990 untuk mengidentifikasi semua gen (genom) yang terdapat pada DNA dalam sel manusia dan memetakan lokasinya pada tiap kromosom manusia yang berjumlah 24.[12] Proyek ini memiliki potensi tak terbatas untuk perkembangan di bidang pendekatan diagnostik untuk mendeteksi penyakit dan pendekatan molekuler untuk menyembuhkan penyakit genetik manusia [12]

Aplikasi di Bidang Medis

Aplikasi dari bioteknologi medis sudah berlangsung lama, sebagai contoh 100 tahun lalu lintah umum digunakan untuk merawat penyakit dengan cara membiarkan lintah menyedot darah pasien bloodletting| bloodletting. Hal ini dipercaya dapat menghilangkan darah yang sudah terjangkit penyakit. Pada zaman sekarang, lintah ditemukan memiliki enzim pada kelenjar salivanya yang dapat menghancurkan gumpalan darah yang bila tidak dihancurkan dapat menyebabkan strok dan serangan jantung. Selain contoh tersebut, terdapat banyak aplikasi bioteknologi di bidang medis sebagai berikut.

Sel Punca

Sel punca adalah jenis sel khusus dengan kemampuan membentuk ulang dirinya dan dalam saat yang bersamaan membentuk sel yang terspesialisasi. Aplikasi Terapeutik Sel Stem Embrionik pada Berbagai Penyakit Degeneratif. Dalam Cermin Dunia Kedokteran, meskipun kebanyakan sel dalam tubuh seperti jantung maupun hati telah terbentuk khusus untuk memenuhi fungsi tertentu, stem cell selalu berada dalam keadaan tidak terdiferensiasi sampai ada sinyal tertentu yang mengarahkannya berdiferensiasi menjadi sel jenis tertentu. Kemampuannya untuk berproliferasi bersamaan dengan kemampuannya berdiferensiasi menjadi jenis sel tertentu inilah yang membuatnya unik . Karakteristik biologis dan diferensiasi stem cell fokus pada mesenchymal stem cell. Cermin Dunia Kedokteran
Aplikasi dari sel punca diantaranya adalah pengobatan infark jantung yaitu menggunakan sel punca yang berasal dari sumsum tulang untuk mengganti sel-sel pembuluh yang rusak (neovaskularisasi). Aplikasi terapeutik sel stem embrionik pada berbagai penyakit degeneratif. Cermin Dunia Kedokteran . Selain itu, sel punca diduga dapat digunakan untuk pengobatan diabetes tipe I dengan cara mengganti sel pankreas yang sudah rusak dengan sel pankreas hasil diferensiasi sel punca. Hal ini dilakukan untuk menghindari reaksi penolakan yang dapat terjadi seperti pada transplantasi pankreas dari binatang. Sejauh ini percobaan telah berhasil dilakukan pada mencit
 admin:

AdhyputraThomasalvaedison Penjahatbiologi Takanlekangolehwaktufbi

BIOTEKNOLOGI

Posted by : Adhzy on :Kamis, 28 April 2011 With 0komentar

Sistem Klasifikasi 5 Kingdom

| Senin, 04 April 2011
Baca selengkapnya »

Perkembangan selanjutnya, para ilmuwan telah mengembangkan cara pengelompokan makhluk hidup yang lebih baik dan lebih maju dibandingkan dengan cara-cara pengelompokan pada zaman prasejarah.
Aristoteles (384 – 322 SM), mengelompokkan makhluk hidup menjadi dua kelompok, yaitu tumbuhan dan hewan. Tumbuhan dikelompokkan menjadi herba, semak dan pohon. Sedangkan hewan digolongkan menjadi vertebrata dan avertebrata.
John Ray (1627 – 1708), merintis pengelompokkan makhluk hidup kearah grup-grup kecil. Ia telah melahirkan konsep tentang jenis dan spesies.
Carolus Linnaeus (1707 – 1778), mengelompokkan makhluk hidup berdasarkan pada kesamaan struktur. Ia juga mengenalkan pada system tata nama makhluk hidup yang dikenal dengan binomial nomenklatur.
Pada tahun 1969 R.H Whittaker mengelompokkan makhluk hidup menjadi 5 (lima) kingdom/kerajaan, yaitu :
1. Monera (bakteri dan ganggang biru)
Makhluk hidup yang dimasukkan dalam kerajaan Monera memiliki sel prokariotik.
Kelompok ini terdiri dari bakteri dan ganggang hijau biru (Cyanobacteria)
2. Protista (ganggang dan protozoa)
Makhluk hidup yang dimasukkan dalam kerajaan Protista rnemiliki sel eukariotik. Protista memiliki tubuh yang tersusun atas satu sel atau banyak sel tetapi tidak berdiferensiasi. Protista umumnya memiliki sifat antara hewan dan tumbuhan. Kelompok ini terdiri dari Protista menyerupai hewan (Protozoa) dan Protista menyerupai tumbuhan (ganggang), dan Protista menyerupai jamur.
3. Fungi (jamur)
Fungi memiliki sel eukariotik. Fungi tak dapat membuat makanannya sendiri. Cara makannya bersifat heterotrof, yaitu menyerap zat organik dari lingkungannya sehingga hidupnya bersifat parasit dan saprofit. Kelompok ini terdiri dari semua jamur, kecuali jamur lendir (Myxomycota) dan jamur air (Oomycpta).
4. Plantae (tumbuhan)
Tumbuhan memiliki sel eukariotik. Tubuhnya terdiri dari banyak sel yang telah berdiferensiasi membentuk jaringan. Tumbuhan memiliki kloroplas sehingga dapat membuat makanannya sendiri (bersifat autotrof). Kelompok ini terdiri dari tumbuhan lumut, tumbuhan paku, tumbuhan berbiji terbuka, dan tumbuhan berbiji tertutup
Organization Chart
5. Animalia (hewan).
Hewan memiliki sel eukariotik. Tubuhnya tersusun atas banyak sel .yang telah berdiferensiasi membentuk jaringan. Hewan tidak dapat membuat makanannya sendiri sehingga bersifat heterotrof. Kelompok ini terdiri dari semua hewan, yaitu hewan tidak bertulang belakang (invertebrata) dan hewan bertulang belakang (vertebrata).
Organization Chart
Organization Chart
Pada tahun 1970-an seorang mikrobiologis bernama Carl Woese dan peneliti lain dari university of Illinois menemukan suatu kelompok bakteri yang memiliki ciri unik dan berbeda dari anggota kingdom Monera lainnya. Kelompok tersebut dinamakan Archaebacteria. Archaebacteria lebih mendekati makhluk hidup eukariot dibandingkan bakteri lain yang merupakan prokraiot. Hal itu menyebabkan terciptanya sistem klasifikasi 6 kingdom pemisah kingdom Archaebacteria dari anggota kingdom Monera lain yang kemudaian disebut Eubacteria.
Gambar 16. Kerajaan makhluk hidup menurut Whittaker
Masing-masing kingdom/kerajaan makhluk hidup dibagi-bagi menjadi Divisio/Divisi untuk tumbuhan dan Phylum/Filum untuk hewan. Setiap Divisi atau Filum terbagi menjadi kelompok-kelompok yang lebih kecil. Demikian dan seterusnya.
Setiap kelompok yang terbentuk dari hasil klasifikasi makhluk hidup, disebut Takson. Lahirlah istilah taksonomi (takson = kelompok, nomos = hokum), atau juga disebut sistematika (susunan dalam suatu system).
Berdasarkan uraian diatas dapat ditafsirkan, bahwa para ilmuwan mengelompokan makhluk hidup beerdasarkan banyaknya persamaan dan perbedaan baik morfologi, fisiologi, dan anatominya. Makin banyak persamaan, dikatakan makin dekat hubungan kekerabatannya.
Makin sedikit persamaannya, makin jauh kekerabatannya. Makhluk hidup yang memiliki banyak persamaan ciri, dapat saling kawin dan menghasilkan keturunan yang fertile (subur), maka makhluk ini dimasukkan ke dalam suatu kelompok (takson) yang disebut spesies atau jenis.
Contohnya: Spesies kucing (Felis domestica)
Spesies harimau (Felis tigris)
Gambar 17. Skema tingkatan takson, spesies (jenis), sampai kingdom (kerajaan)
Bagaimanakah penempatan takson pada penulisan klasifikasi? Untuk mendapat gambaran susunan takson dalam penulisan sistem klasifikasi, Anda dapat mengamati contoh berikut:
a.
Klasifikasi hewan kucing
Kerajaan (Kingdom)
Chordata Kelas (Classis)
Carnivora Suku (Familia)
Felis Jenis (Spesies)
:
:
:
:
Animalia Filum (Phylum)
Mamalia Bangsa (Ordo)
Felidae Marga (Genus)
Felis Catus (kucing)
b.
Klasifikasi tumbuhan padi
Kerajaan (Kingdom)
Divisi (Divisio)
Anak Divisi (Sub Divisio)
Kelas (Classis)
Bangsa (Ordo)
Suku (Familia)
Marga (Genus)
Jenis (Spesies)
:
:
:
:
:
:
:
:
Plantae
Spermatophyta
Angiospermae
Monocotyledoncae
Poales
Poaceae
Oryza
Oryza Sativa (padi)
Sesuai dengan perkembangan klasifikasi, maka pengelompokkan atau klasifikasi makhluk hidup tidak lagi berdasarkan manfaatnya tetapi sudah berdasarkan ciri-ciri morfologi,anatomi dan fisiologinya.
admin:

AdhyputraThomasalvaedison Penjahatbiologi Takanlekangolehwaktufbi

Sistem Klasifikasi 5 Kingdom

Posted by : Adhzy on :Senin, 04 April 2011 With 0komentar

Riwayat Masa Depan Manusia

| Jumat, 01 April 2011
Baca selengkapnya »
Bulan Charles Darwin baru saja berakhir. Keriuhan dalam perayaan 200 tahun kelahiran dan 150 tahun kemunculan kitab fenomenalnya, The Origin of Species, mulai berangsur senyap. Sambil membersihkan sisa-sisa pesta, keingintahuan akan masa depan pun merayap naik: apakah evolusi manusia sudah berakhir seperti nasib perayaan ini?
Siapa pun yang memegang teguh gagasan Darwin seharusnya menolak memberi kata sepakat atas pertanyaan tersebut. Evolusi organik adalah peristiwa yang pasti, sama pastinya dengan bumi mengelilingi matahari. Tidak ada makhluk yang bisa menghindar. Keanekaragaman, eksis, atau punahnya suatu spesies diputuskan sepenuhnya oleh seleksi alam, penggerak utama evolusi, dan itu juga berlaku untuk Homo sapiens.
Rata-rata keberlangsungan hidup sebuah spesies mencapai beberapa juta tahun. Setiap tahun, ribuan spesies dinyatakan punah dan ribuan lainnya muncul menggantikan. Tidak ada jaminan apakah kelak manusia dapat terhindar dari kedua fakta tersebut.
Uniknya sejumlah penganut Darwinian justru berpendapat sebaliknya. Manusia terlalu berbeda sehingga tidak bisa disamakan dengan spesies lain. Manusia memiliki keunggulan dalam teknologi, pengaturan energi, penggunaan sandang, organisasi sosial, dan kemampuan berbahasa tingkat tinggi. Pendek kata, manusia adalah satu-satunya spesies yang mampu menghindari evolusi.
Salah satu argumen termasyhur disampaikan oleh Steve Jones dalam debat bertajuk Is Evolution Over? di Royal Society Edinburgh tujuh tahun silam, "Jika Anda ingin tahu seperti apa utopia, lihat saja sekeliling. Keadaan lebih baik atau lebih buruk telah berhenti untuk spesies kita."
Argumen Jones disokong penuh oleh Peter Ward, ilmuwan ternama yang bertugas di University of Washington. Lewat Future Evolution (2001), Ward sama sekali tidak melihat perubahan akan melanda manusia. Gaya hidup terkini, khususnya di negara-negara maju, telah melindungi manusia dari tekanan evolusi.
"Orang-orang sekarang bisa hidup lebih lama, lebih kuat, dan lebih sehat," tulisnya.
Beberapa pakar lain memilih jalan yang lebih aman. Mereka menganggap evolusi manusia masih terus berlangsung. Bukan di tataran fisik, melainkan kultur. Ke depan, perubahan signifikan hanya terjadi pada wilayah perilaku, kecenderungan sosial, dan intelegensi.
Arus berlawanan pun datang dari Chris Stringer yang bergiat di Natural History Museum, London. Menurut dia, terlalu naif jika manusia berpendapat bahwa dirinya bernilai jauh lebih istimewa di hadapan seleksi alam ketimbang spesies lain.
"Kalau menyimak kembali orang-orang Zaman Batu di Eropa sekitar 50 ribu tahun silam (Homo neanderthalensis), Anda pasti berasumsi mereka akan berevolusi menjadi lebih besar dan kuat. Kemudian, dengan cukup tiba-tiba, mereka justru kalah bersaing dan digantikan oleh spesies yang bertubuh lebih ringan, tinggi, dan lebih cerdas yang berdiaspora dari Afrika (Homo sapiens). Anda tidak dapat memprediksi ke arah mana evolusi bakal melaju," kata Stringer.
Maklumat Stringer semakin jelas terasa dengan terbitnya The 10,000 Year Explosion: How Civilization Accelerated Human Evolution karya Gregory Cochran dan Henry Harpending. Dalam buku yang baru berumur sebulan itu, tertera bahwa sejak ditemukannya pertanian dan mencuatnya masyarakat perkotaan, manusia telah berevolusi 100 kali lebih cepat.
Meski masih sengit diperdebatkan, data tersebut setidaknya menunjukkan kemajuan dan teknologi yang dihasilkan tidak serta-merta melindungi manusia dari jepitan seleksi alam. Kita memang tidak tahu apa yang menunggu di depan sana, namun itu bukan berarti spesies kita aman dari evolusi.
Gagasan yang bisa kita ciptakan memang hebat, teknologi yang kita lahirkan juga luar biasa canggih. Tetapi, segenap makhluk tetap harus tunduk pada Hukum Kedua Orgel: "Evolusi lebih pintar dari Anda semua."

Riwayat Masa Depan Manusia

Posted by : Adhzy on :Jumat, 01 April 2011 With 0komentar

Hewan Pantai Yang Lucu dan Mematikan

|
Baca selengkapnya »
Apabila kita ingin jalan-jalan ke pantai, jangan sampai terpisah dari rombongan dan harus hati-hati. Mau tahu alasannya?

Karena di pantai ada beberapa hewan yang tampak lucu, tapi bisa mematikan. Layaknya anak kecil yang mudah excited dengan banyak hal-hal baru, mungkin rasa ingin tahu kalian akan mendorong kalian untuk lebih dekat menyentuh hewan yang terlihat lucu misalnya. Apa saja hewan pantai yang harus kita hindari?

The Cone Snail

Cone Snail
Hewan yang satu ini punya bentuk yang indah. Menggemaskan, tepatnya. Siapa yang tidak ingin menyentuhnya dan membawanya pulang? :) Tapi, cone snail ini punya senjata yang sangat berbahaya lho. Bagian ujung pangkal mulutnya bisa menembakkan sengat berupa racun yang sangat mematikan. Korban akan mengalami malfungsi syaraf, di mana tidak ada bagian tubuh yang bisa digerakkan, kemudian meninggal hanya dalam 4 menit.

Poison Arrow Frog

Poison Arrow Frog
Namanya saja sudah mengandung racun :)  Kodok yang bisa melompat hingga 2 meter ini mempunyai senjata mematikan di kelenjar kulitnya. Jangan coba-coba sentuh yaaa!

The Lazy Clown

The Lazy Clown
Hewan yang mirip duri pohon ini hidup di hutan Amazon, di selatan Brazil. Namanya Taturana Tatarana. Lucu yah? Tapi sayang, ternyata hewan ini tidak selucu namanya, karena dia memiliki ratusan duri pada tubuhnya, yang menyimpan racun mematikan dan mengandung Anti-coagulant buat darah kita. Hampir dapat dipastikan bahwa hewan ini telah memakan belasan korban setiap tahunnya.

Beaked Sea Snake

Beaked Sea Snake
Ular laut ini bisa kita jumpai di Kepulauan India dan Asia, pantai-pantai daerah India, atau sekitar Teluk Persia. Nama ilmiahnya Enhydrina schistosa. Lucunya, warga Singapura dan Hongkong suka menjadikan hewan ini sebagai lauk, padahal hewan ini punya racun yang bisa membuat  kamu tidur bersama ikan-ikan di laut untuk selamanya, hehehe

Stone Fish

Stone Fish
Nah, kalau hewan yang satu ini, bentuknya menyerupai batu. Cukup berdiam diri di dasar laut, dan siap meracuni siapa saja yang menyentuhnya dengan duri-duri yang terletak hampir di seluruh bagian tubuhnya. Kabarnya, racun dari hewan ini akan sangat menyiksa korbannya, sehingga si korban merasa lebih baik mengamputasi bagian tubuhnya yang terkena racun tersebut. Wah, sangat mengerikan ya?

Box “Coffin” JellyFish

Box Coffin JellyFish
Kalau ubur-ubur yang satu ini, ada di film 7 Pounds yang dibintangi Will Smith. Dalam film itu, diperlihatkan bagaimana Will Smith mengakhiri hidupnya dengan membiarkan dirinya digigiti oleh Jellyfish. Hewan ini memiliki 24 pasang mata dan tentakel yang mengandung ribuan dosis nematocysts. Dengan ribuan jarum-jarum racun yang menusuk tubuh di seluruh bagian, hampir dapat dipastikan bahwa hewan ini akan membunuh hanya dalam hitungan detik.

Hewan Pantai Yang Lucu dan Mematikan

Posted by : Adhzy on : With 0komentar

Fungsi Population Genetics menjelaskan peran Seleksi Alam dalam Evolusi Neo-Darwinism

|
Baca selengkapnya »
Seiring dengan pesatnya kemajuan teknologi di bidang biologi molekuler, aspek-aspek ilmu genetika juga mengalami perkembangan yang sangat pesat. Aspek yang dimaksud masuk ke dalam ranah ilmu genetika yaitu classical genetics, molecular genetics dan population genetics. Quantitative genetics yang membahas secara mendalam berbagai macam sifat kuantitatif seperti tinggi badan, berat badan, IQ, kepekaan terhadap penyakit, dan sebagainya masuk ke dalam ilmu population genetics. Ilmu population genetics pula yang mendukung teori evolusi yang dikemukakan oleh Charles Darwin 150 tahun lalu. Ilmu ini menggunakan berbagai macam pendekatan statistik untuk membuktikan, menjelaskan atau mendeteksi adanya perubahan organisme dalam lingkungan oleh sebab adanya dorongan evolusi (evolutionary force). Dari sinilah lahir istilah Neo-Darwinism.

Dalam Neo-Darwinism, evolusi dideskripsikan sebagai perubahan frekuensi alel yang ada dalam populasi di tempat dan waktu tertentu oleh sebab adanya evolutionary force. Evolutionary force yang dimaksud di sini terdiri dari (1) Mutation, sebagai the building block of evolution, ia cenderung meningkatkan variasi genetis atau frekuensi alel yang menjadi subyek seleksi alam; (2) Natural Selection, terdiri dari directional selection, stabilizing selection dan disruptive selection; (3) random genetic drift, yang cenderung menekan variasi genetis; (4) Non-random mating yang meningkatkan homozigositas fenotip tanpa mempengaruhi frekuensi alel; (5) migration, yang mendorong kesamaan frekensi alel antar populasi yang berbeda.

Sebelum melangkah lebih jauh, alangkah baiknya jika kita mengenal bagaimana cara menghitung frekuensi alel dalam suatu populasi. Misalkan dalam suatu populasi, terdapat 2 alel dalam satu lokus, yaitu A1 dan A2, maka dalam populasi tersebut hanya ada variasi genotip individu sebagai berikut  A1A1, A1A2, dan A2A2.  Jika dalam populasi tersebut diketahui berjumlah 500 orang dan individu dengan genotip A1A1 = 245, A1A2 = 150 dan A2A2 = 105, maka frekuensi masing-masing alel dalam gene pool, yaitu A1 dan A2 bisa dihitung sebagai berikut :

Frekuensi A1= [(2 x 245) + (1 x 150)] / 1000 = 0,64

Frekuensi A2= [(2 x 105) + (1 x 150)] / 1000 = 0,36

Di sini 1000 artinya dalam gene pool yang terdiri dari 500 individu terdapat 1000 alel sebab masing-masing individu memiliki 2 alel atau diploid. Pada individu A1A1 terdapat dua alel A1, sedangkan dalam individu A1A2 terdapat satu alel A1.

Langkah selanjutnya adalah mengetahui apakah individu dengn alel tertentu memiliki kemampuan adaptasi lebih unggul dibandingkan alel lain yang dinyatakan dengan fitness, kita harus menghitung dulu nilai fecundity dan survival dari keturunan yang dihasilkan oleh individu dengan genotipe tertentu. Fecundity adalah kemampuan organisme untuk mengasilkan keturunan atau dengan kata lain rata-rata keturunan yang dilahirkan oleh organisme dengan genotpe tertentu dalam populasi bersangkutan. Survival adalah kemampuan keturunan tersebut untuk tetap hidup sampai masa reproduksi. Produk antara fecundity dan survival adalah fitness. Kita ambil contoh pada wolf spider betina yang menghasilkan keturunan seperti pada tabel dibawah ini.



Genotipe              fecundity       Survival             fitness          relative fitness

A1A1                        230               0,0200               4,6                       1.00

A1A2                        280               0,0150               4,2                       0,91

A2A2                        190               0,0100               1,9                       0,41         



Pada tabel di atas tampak bahwa individu homozygote A1 memiliki fitnes paling besar walaupun fecundity nya sedikit lebih rendah daripada heterozygote tapi memiliki survival yang lebih tinggi. Konsep relative fitness lebih sering dipakai dalam population genetics dibandingkan dengan absolute fitness. Dalam relative fitness, individu dengan genotipe tertentu yang memiliki fitness tertinggi dianggap memiliki fitness sebesar 1, sedangkan yang lainnya kurang dari 1 seperti tampak pada kolom terakhir tabel di atas. Dengan kata lain individu dengan kemampuan adaptasi paling tinggi memiliki fitness sebesar 1,00.

Dari penjelasan di atas tampak adanya proses seleksi terhadap individu dengan genotipe tertentu, yang dalam hal ini yaitu seleksi terhadap alel A2. Besarnya seleksi yang dialami oleh individu dengan genotip tertentu dinyatakan dengan bilangan coefficient of selection. Hubungan antara fitness dengan coefficient of selection (s) dapat dinyatakan sebagai berikut :

                                         coefficient of selecion (s) = 1 – fitness (F)

Dari contoh dalam tabel di atas, dapat dihitung coefficient of selection (s) nya, yaitu sebesar 0,59.

Dalam lingkungan yang sesungguhnya, alel tertentu bisa mempengaruhi kemampuan beradaptasi (fitness) individu tidak selalu secara langsung, artinya, fenotip yang dihasilkan oleh genetotip tertentu tidak secara langsung menentukan kemampuan hidupnya, tapi lebih menentukan kemampuan hidup individu tersebut melalui melalui interaksinya dengan lingkungan. Misalkan kemampuannya berkamuflase suatu organisme sangat bergantung pada genotipe yang mengkode warna pigmen dan kondisi lingkungan di mana organisme itu hidup. Semakin baik kemampuan berkamulflase maka semakin tinggi pula ia terhindarkan dari predator, akibatnya, alel yang mengkode sifat terkait lebih banyak diturunkan pada generasi berikut daripada alel lain. Contoh mekanisme seleks seperti ini tampak pada salah satu jenis kupu Beston betularia di Inggris (lihat gambar). Sebelum era industrialisasi di Inggris, banyak pohon masih berwarna terang, sehingga kupu berwarna terang lebih terkamuflase dan terhindarkan dari predator daripada kupu berwarna gelap. Di sini alel pengkode pigmen gelap dominan terhadap alel pengkode pigmen terang. Namun, saat era industrialisasi, dimana banyak sekali polusi udara yang membuat warna kulit pohon menjadi lebih gelap, kupu dengan warna gelap lebih adapted dibandingkan dengan kupu berwarna terang, akibatnya frekuensi alel untuk mengkode pigmen warna gelap lebih banyak atau meningkat.

Efek Seleksi Alam pada Frekuensi Alel di Generasi Berikut


Seperti yang telah disebutkan di atas, seleksi alam dapat meningkatkan frekuensi alel yang menghasilkan fenotipe dengan fitness tertinggi. Perhitungan mengenai efek seleksi alam ini kita ambil contoh yang sama pada pada tabel di atas, namun kali ini individu heterozygote memiliki relative fitness sama dengan individu homozygote yaitu 1,00 sebagai berikut:



Genotipe       frekuensi genotipe P   relative fitness        kontribusi      frekuensi genotipe P’

A1A               (0,64)2= 0,41                   1.00                     0,41               0,41/0,92 = 0,44

A1A2                2 (0,36)(0,64)=0,46           1,00                     0,46               0,46/0,92 = 0,50

A2A2                (0,36)2 = 0,13                   0,41                     0,05               0,05/0,92 = 0,06

                          total = 1                                             total = 0,92             total = 1



Perhitungan frekuensi P di atas berdasarkan hukum Hardy-Weinberg. Dari perhitungan di atas tampak bahwa total frekuensi alel pada generasi berikut (P’) mengceil sebab adanya seleksi pada alel tertentu, dalam hal ini alel A2 dalam genotip homozygote A2. Dalam generasi berikutnya, frekuensi genotipe  A1A1 menjadi 0,44, genotipe A1A2 menjadi 0,50, dan genotipe A2A2 menjadi 0,06. Frekuensi genotipe A2A2 turun dari 0,13 menjadi 0,06, yaitu tinggal separuhnya! Dari perhitungan ini dapat diketahui bahwa frekuensi alel A2 pada generasi berikut menjadi :

(0,06) + (0,5 x 0,50) = 0,31

Yakni mengalami pernurunan sebesar 0,36-0,31 = 0,05 atau sekitar 5%. Jika frekuensi A1 dinyatakan sebagai p dan frekuensi A2 dinyatakan sebagai q, maka perbedaan frekuensi A2 antara generasi parental dan f1 dinyatakan dalam Δq = -0,05. Sedangkan frekuensi alel A1, dengan cara perhitungan yang sama dengan alel A2 mengalami peningkatan sebesar 0,05 atau 5%.

Contoh di atas menggambarkan jika dominasi (dominance) A1 adalah complete dominance, artinya, fenotipe dari heterozygote memiliki sifat yang sama persis dengan homozygote A1 sehingga seleksi alam tidak bisa “mendeteksi” adanya alel A2 dalam keadaan heterozygote. Hal ini tidak selalu benar pada dunia nyata. Sebab kadangkala, ada alel yang tidak menunjukkan sifat demikian dalam hal dominasi, tapi memiliki derajat dominasi sampai nilai tertentu yang dinayatakan dalam level of dominance (h). Alel dengan sifat demikian dikatakan memiliki efek additif (additive effects). Lihat contoh pada tabel berikut ini :

Genotipe       frekuensi genotipe P     relative fitness    kontribusi       frekuensi genotipe P’

A1A1                (0,64)2= 0,41                    1.00                   0,41                 0,41/0,83 = 0,49

A1A2                2 (0,36)(0,64)=0,46            0,80                   0,37                 0,37/0,83 = 0,44

A2A2                (0,36)2 = 0,13                    0,41                   0,05                 0,05/0,83 = 0,06

                        total = 1                                            total = 0,83             total = 1


Dengan data di atas, alel A2 mengalami penurunan sebesar 8%, lebih besar daripada tabel di atas. Dari sini tampak bahwa jika level of dominance menurun, maka alel A2 dalam keadaan heterozygote akan “terdeteksi” oleh seleksi alam.

Penejelasan ini hanyalah sepotong dari sekian banyak perhitungan dalam population genetics yang tentu saja tidak bisa diceritakan panjang lebar dalam  kesempatan ini. Penjelasan ini belum mencakup penjelasan peran population genetics dalam menjelaskan seleksi alam yang terjadi pada quantitative traits sebagai dasar evolusi organisme yang jauh lebih kompleks.



Referensi :


Hyde, D. 2009. Population Genetics. In: Hyde, D. (Ed), Introduction to Genetics Principles, 1st Edition, (p. 790-811). New York: McGraw-Hill.
Next Prev
▲Top▲